home *** CD-ROM | disk | FTP | other *** search
/ 800 College Boards / 800 College Boards.iso / cbrd58 / faa < prev    next >
Text File  |  1984-07-30  |  24KB  |  99 lines

  1.                                         Graphs are of two general kinds: those  representing equations or formulas, and those depicting observed data, such as  statistical or experimental results. In either case, the graph is a pictorial   way of showing arithmetic or algebraic  relations between numbers.              :RA                                     Graphs of Equations.                                                            There are many sets of values of the    letters that satisfy an equation. The   equation y = 2x - 3 is satisfied when x = 2 and y = 1, when x = 0 and y = -3,   and so on. By convention, we write such number-pairs as (2,1) and as (0,-3).    Always put the x value (or what         corresponds to x if there are different letters) before the y value. These      number pairs are algebraic in           character.                              :RA                                     To each of the number pairs that        satisfy an equation there corresponds a point on the graph of that equation.    When you plot these points and join     them, you have the graph of the         equation. Then to draw the graph of the equation 3x - y = 2, first solve for y: y = 3x - 2. Then make a table of number pairs.                                                                                     x    y                                  ------                                  0   -2                                  1    1                                  2    4                       :RA                                     :SD                                     :SB                                     :SG217104202251023143                   :SP245024210144210144210144             :SH0636(3,7)                            :SH0935(2,4)                            :SH1234(1,1)                            :SH1533(0,-2)                           :SF                                     The number pairs are                    plotted as shown in the                 accompanying graph, and                 the points are joined by                a straight line through                 them. Note that the line                does not stop at the                    points plotted but                      continues through them                  to show that there are                  many other points (number               pairs) which satisfy the                equation.                               :RA                                     :SB                                     :SG217104202251023143                   :SP245024210144210144210144             :SH0636(3,7)                            :SH0935(2,4)                            :SH1234(1,1)                            :SH1533(0,-2)                           :SF                                     Point (3,7) is on the                   graph. You can see that                 x = 3, y = 7 will                       satisfy the equation                    3x - y = 2. To each of                  the points on a graph,                  there corresponds a                     pair of numbers which                   fulfill the conditions                  of the question.                        :RA                                     :SD                                     When you have an equation in which x    and y appear only in the first power,   and no term contains their product, the graph is a straight line and the        equation is said to be linear. For such graphs only three points are needed.    :RA                                     Equations such as:                                                                   xy = 6,                                                                      2   2                                  x + y  = 9,                                                                               2                               or y = x  - 2x                                                               are not linear. Their graphs are curves instead of lines.                       :RA                                     :SD                                     :SB                                     :SG210128195237031143                   :SP231040210088210088210088             :SH0734(2,9)                            :SH0933(1,7)                            :SH1132(0,5)                            :SH0431c                                :SH1635n                                :SF                                     Formulas are equations.                 Note: the graph of the                  formula c = 2n + 5 is                   drawn in the same way.                  Note in the graph that n                corresponds to x, so that               it becomes the horizontal               axis. Also, when a                      formula has some physical               significance, negative                  values may have no meaning.                                                          n    c                                  ------                                  0    5                                  1    7                                  2    9                             :RA                                     :SD                                     :SB                                     :SG224096195258031127                   :SP210040245120238104238080             :SF                                     Consider the graph                      shown. To find y when                   x = 2, you go two                       divisions on the x axis                 to the right of the                     origin (0,0); then draw                 a vertical line. This                   may be done mentally.                   Where this line intersects              the graph, find the y                   value of the point.                     y = -1, is the Ans.                     :RA                                     :SD                                     To find the equation of the line,       recall that two points fix (determine)  a straight line. Every linear equation  can be solved for y and put in the      form; y = mx + b. Note that b is the    value of y when x = 0. Now find two     points on the line: (0,3) and (2,-1).   Since these two number pairs must       satisfy the equation, 3 = m(0) + b and  -1 = m(2) + b. From this we derive b =  3 and m = -2. The equation of the line  is then y = -2x + 3 or 2x + y = 3.      :RA                                     Note that if a line goes through the    origin, point (0,0), the value of b is  0 and the equation becomes of the form  y = mx.                                 :RA                                     Here are several general equations to   solve common graph problems.                                                    Formula to find the distance between    (x,y) and (x',y').                                                                        ____________________                   /       2           2             d = \/(x - x')  + (y - y')                                                   Formula to find the midpoint between    (x,y) and (x',y').                                                                     x + x'   y + y'                     m = ------ , ------                           2        2                     :RA                                     Formula to find the slope between (x,y) and (x',y').                                                                           y' - y                              m = ------                                  x' - x                           :RA                                     :SD                                     :SB                                     :SC192035200054226036226036             :SP215073200054243060243060             :SH0631a                                :SH0729b                                :SH0932x                                :SH0732c                                :SH1324a =  90^ 25%                     :SH1424b = 144^ 40%                     :SH1524c =  60^ 16 2/3%                 :SF                                     Graphs of Statistical Data                                                      The Circle Graph.                                                               This type of graph is                   used to show the                        component parts of a                    whole. The circle is                    divided into sectors                    by radii. Since a                       sector with a central                   angle of 90^, is                        90/360 or 1/4 of the                    circle, such a sector                   represents 25%,                         provided the circle                     corresponds to the                      full 100%.                              :RA                                     :SB                                     :SC192035200054226036226036             :SP215073200054243060243060             :SH0631a                                :SH0729b                                :SH0932x                                :SH0732c                                :SH1324a =  90^ 25%                     :SH1424b = 144^ 40%                     :SH1524c =  60^ 16 2/3%                 :SF                                     A 60^ sector shows 1/6                  or 16 2/3%. Any sector                  is then the same                        fraction (or percent)                   of the circle as its                    central angle is of                     360^. In the circle,                    angle x is found by                     subtracting the sum of                  the other angles from                   360^. Angle  x = 66^,                   and its sector shows                    18 1/3%.                                :RA                                     :SD                                     The Bar Graph.                                                                  This type consists of bars (horizontal  or vertical). Only the length of the    bars is measured to scale. The          thickness has no meaning, although for  the sake of appearance, we usually keep the bars of the same thickness.         :RA                                     The Broken-Line Graph.                                                          On this type of graph, points are       plotted in the same way as points on a  linear equation graph. There are,       however, several differences between    the two types of graphs.                :RA                                     First, on the broken-line graph, there  is no set rule; rather, the points are  found from given values.                                                        Second, consecutive points are joined   by straight lines which may differ in   direction.                                                                      Third, the graph is shown only for the  points given, since there is no rule to determine a point.                                                              Fourth, either or both of the scales    may not start at zero. In fact, they    may be different, so that care must be  exercised in reading horizontal and     vertical values.                        :RA                                     Note: When the changes to be            represented on the graph are continuous (as growth in weight or height, or      daily temperatures), a broken-line      graph is sometimes "smoothed out" into  a curved-line graph.                    :ET                                     :ET                                                                                       ' !m..         ' !DISK1      j!nBASICA  EXE `qåÇ√EDLIN   COM `qÜáSAMPLE  BAK ¿Γ2|WDISK2      m!oDISK3      o!pDISK4      p!rDISK5      r!sDISK6      t!tDISK7      u!uDISK8      w!vDISK9      x!wDISK10     z!xDISK11     }!y├^¼Vó$ë"╟╬╟║45╟
  2. î:ï"Φß∩÷$u
  3. ░?Φïµ░ ΦåµΦ2α÷$uΦ%∩Ç>╦├Φ,█Φ?Σ╞╪ïwSΦï[Θ₧πΦièα<"t┤,Nï╓3╔¼:─t
  4. └α≈AÇⁿ,tN≈┘Çⁿ,uNï■O░ :└²≤«ⁿtAï┘Φ4πë├δ╛Φ'╣<Ht╣<OuΦ,0r<    v,<
  5. r:┼w÷╞αuk╙Γrg
  6. ╨δ▐N3╔░  ╥y≈┌2└
  7. └£δ)Ç>╪t▓3█ï╙ïδë&╞┘ê(Φ╚<&tÜNΦ≈£Φí╪Çⁿw :─v╞┘3 ¥Qï╦ï▌╕└u░ÇVΦ⌐√^YδΘ▌╔¥╕áu░ÇΦ╣∩Φâ<%t,<#t(<!t$<Dt<EtNδΦá£3█╞(ë&Φó¥u≈█╦πhâ∙&╕â∙╔|oVï∙  y≈▀â &~Ç.Ç╤τ╤τ╤τÇ>┘t*ü╟4╛ü}■Çrâεç≈ÑÑï≈┐  ╔yΦ(≡δΦú∩δü╟0╛ ╔yΦΩ√δΦù√^í╪:─t&<tÜ<├3└úó├Üå<├Φ╞<-t<+uFN├╗ Φëü√╠ w⌠╤π├╤π╤π╪xΦδΘ3╔Φp╤Γ╤╙┬ï√â╫╤Γ╤╙╤Γ╤╙╨▀
  8.  tΓ╞┘3 ΦKPWUSR╤Γ╤╙╤╒╤╫╤Γ╤╙╤╒╤╫X╨X╪XΦX°╤Γ╤╙╤╒╤╫X╨â╙â╒â╫ü Ör┬ &Φ    
  9. └tÇ╩δ⌠Φ),0r
  10. <    wÿ&├<■uÇ>(u ╞( &δ┘Nâ─├¼< t√<    t≈<
  11. t≤<ar<zw$_├┤HAYDEN SOFTWARE$╚SCORE IMPROVEMENT SYSTEM FOR THE SAT≡To use the course    insert the program disk"    and press any key8    COPYRIGHT (C), 1984P    HAYDEN SOFTWARE COMPANY, INC.r    v    SAT~    PROGRAM DISK NOT FOUND'ÿ    DO YOU WISH TO GO BACK TO COMMAND LEVEL─    Y╩    N  ║(Ä┌&ï>Ä┬[ï∩âφ╕Ä╪╣"+╚╤ß╤ß╤ß╕│Ä└3÷3 ≤Ñî╤î╪+╚ü∙v╣╤ß╤ß╤ß║Ä┬3÷ï■ΩΣ<ÉÉÉæ<            x──dº│╢αè]xEc┴o≥å#Ç╞ñ~ì@z≤ZárN    Ñ╘ΦΦvHΣ T╩Ü;ß⌡ΓΓΓπππΣΣΣσσσσµµµτττΦΦΦΦΘΘΘΩΩΩδδδδ∞∞∞φφφεεεε∩∩∩≡≡≡±±±±≥≥≥≤≤≤⌠⌠⌠⌠⌡⌡⌡÷÷÷≈≈≈≈°°°∙∙∙····√√√ⁿⁿⁿ²²²²■■■               
  12.  
  13.  
  14.  
  15.     !!!"""####$$$%%%&&&&'''((())))***+++,,,,---...////0001112222333444555566677788ⁿ^≈_B";Ü5⌡≈╥J ╩â≥╡ç}#~αæ╖╤t'₧Xv%F*┼ε╙«çûw-;uD═╛1èÆòÜmA4-≈║Ç╔q7|┌tPá;Ædσ<>bò╢}JlA]ÆÄεÆE┤ñ62¬w8HßM─╛öòfK¡░:≈|O╪\    5▄$4R┤KB.aUëPo    ╠╝ Y½$╦  δ/\╓φ╜╬■µ[_ª┤6A_p    c╧aäw╠+fCzσ╒ö┐Vijl»╜7mäGG¼┼'peΓX╖Qs▀Oìùnw╫úp=
  16. ╫#z═╠╠╠╠╠L}ü äHçzè@ÄPCæ$töÇûÿ ╝>¢(kn₧∙ó@╖C:ÑÑ╘h¿*τä¼Ç⌠ µ5»á1⌐_c▓┐╔╢┼.╝ó1╣@v:k ^╝Φë#╟
  17. └b¼┼δx-├Çz╖&╫X╞ɼn2xå╩┤W
  18. ?h)═íφ╠╬┬S╨à@aQY╘ªÉ╣Ño%╫ ⌠'Å╦N┌
  19. ö°x9?▐ ╣6╫Å!ßOg═╔≥IΣ#üE@|o|τ╢p+¿¡┼δπL67Eεα├V▀äv±l:û ⌡╔{╬ù@°█H╗┬╜p√ë╡PÖv δPΓñ?<é&σÄOkà8╧╨╕╤∩ë'╞½7î╟C╞░╖ûeÅ\Ω{╬2~ô⌠Σé┐]3û0₧íb/5`Ö▐Ñ¥=! ¥ûCì)/á{╘QF≡≤Zú═$≤+v╪ºε∩╢ô+¬ÇΘ½ñ8╥U¡≡qδfcú▒lNª@< '┤Γ╧PK╧P╖EφüÅü╗L'0'.'E':'PPPe▐∙3≤5ÇDNnâ∙"~┬h!ó┌Iü█Iü,¢k┴æ
  20. ÇÆ
  21. Ç▓j÷⌠ó0    ú0    Te┬B╫│]ü±\);¬8üz╧╤≈r1Çr1ÇÇ*.* ┴
  22.  ∩
  23.   ▒  │≡╡` ╖Ç ╣≡ ╗└ └p ≈ ┴≡ ├α┼`     » ╦P'═α        O╒`╫Ç┘á█≡ ▌≡    ß≡     ▀   Θ≡  ╧4ß∩± ≤@⌡ R≈Ç∙á√└²α !A±  Å / ╧ ∩ ║q Oaüí ╧ßz /#A o'╤)± +┴ ∩/íD / ╧ _07A9í    ∩D±  /C±  oGüIíKí╟OQ! OUa
  24. └t    ║τ'ΦÖΘâ²║Γ'ΦÉ╛p-╣ ┐┘,ï╫≤ñ╕
  25. ½3└¬Θ~Φc²ΦΘ]²║¡'Φj┐┘,┤0═!P2Σ▒
  26. ÷±▒╥α
  27. ─╣è╨Φì²░.¬Xè─2Σ▒
  28. ÷±▒╥α
  29. ─╣è╨Φs²3└¬║┘,Θ0ΦΘr&Ç=u
  30. Φ╠░>Φ δ8&èG
  31. └t0<$tΦ δ∩&èG╗╒)
  32. └tâ├ΦE:tÇ?u±δ╙W W_δ╚├║╧)Θ╓░=δ░δ
  33. ░>δ░<δ░|Θ╞
  34. ╛Ǽ2Σú╣-ë6╗-╞╩-╞╞-ï6╗-ï╣-ï╓π;QVΦ╕⌠ú╜-[+▐Y╦ï╓π)I¼Φ·u■╞-<?uÇ╩-<*uÇ╩-ΦL■t:╖,u╓N2└åF<uêë6╗-ë╣-├╛Ǽ
  35. └tΦ<├¼Φ■u<;u÷N├ΦφΦα t*Φ├ΦVΦ4Φ╥ <;t¼<tΦe<;tΦε²tΦdδΩ3└½├ΦΦσ√├&Ç=u║å(ΘΘâ∩ï╫Φ,ü∙ tΦΘ█ΦvΦVΦ≥^tHΦ█ΦΘδ6ΦΣt<3█V¼<t<=u≈■├Ç<u≡■╟δ∞^■≡Φδ ï╞^ αïπ╩ïw¼Φ½÷Γ·├╛δΦ<δ┐ΦVδïE4Çδ╛δΦ'δ┐ΦAδïEï]è5▓Ç╧ÇïLï| ïtüτ ü╬Ç
  36. φtc
  37. ΣtY:∞sç≤ç·æ*σ÷▄ÇⁿwG╨α╨┘æè═╡πSÇ∙| ╥tÇ╦ï╙3█ÇΘrt<Ç∙~)
  38. ╥tÇ╬è╓è≤è▀è²ÇΘwt!╤Γ╤╙■┴u°δï▐ï╫ï┴Θà÷┬?tÇ╩ ╤δ╤┌Γ·÷┬?tÇ╩ ╨αp╫▐sM╤█╤┌■─uEΘ-┌+·≤ï╫ï▐s
  39. ≈╙≈┌⌡â╙÷╨ █u Ç∞vTç┌ █tN
  40.  uÇ∞vEè√è▐è≥▓
  41.  x
  42. ■╠t5╤Γ╤╙q÷Ç·Çwr÷╞t Ç╞â╙s■─t$ÇÇτ
  43. ╟úèπè╞ú├yΘ╝┘╞├╛δΦ∩Θ┐Φ    Ω¡ï4û
  44. ΣtΣïM
  45. φt▌ï=ï╪2┴Ç∞üÇφÇσp╚Ç─ÇPΦï╙ôX
  46.  x
  47. ╤Γ╤╙
  48. Σuçδ┤■─t¡Θ~ ╖è∩Ç╦ÇÇ╔ÇSSï╞≈τï┌ └X£≈τ╪â╥ï·ï┴≈µ╪·¥tÇ╦X÷ß╟├╛δΦoΘ┐ΦëΘïMïD
  49. φtC
  50. Σt¿2┴Ç∞ÇÇφÇ*σpâÇ─ÇPÇ╔ÇïTè$2└Ç╬Çï]è-2╔Ç╧Ç╤Ω╤╪ΦVΦ ┬ï╓tÇ╩[Θ\ Θß╪;╙s≈≤û3└πï·ï╞≈ß≈╪·ï╫sN┴╙s∙├╛  +┴╨ï┴sφ├╞╪δ ╞╪δ╞╪ë&╝ 6 6 6 6PQRVWUΦôï╓Φ,±]_^ZYXÅÅÅÅ╦á╪<tÿï≤┐+°æ╤Θ≤ÑδëΦ╒⌡╗∙Ç>╪v╗≡è├Φ4≈:╫|3è┬┴:├+ÿæô ╔~ ñKαⁿ░0≤¬t ░.¬░0≤¬ï╦≤ñ╛áï╟+╞╞├≈┘δµñIt░.¬╤≤ñ╕E+
  51. ╥y÷┌┤-Ç>╪uH½Æ╘
  52. å─00½δ╟XXX/.·-Xπ-XX■-&.+.╞╞6·╞7P3└Ä╪9àⁿu.ëàTδï╫╤·â┬·UVW┤═_^]├├ê7êò÷├QRS3╔ïò÷┤Φº⌠á£ê[ZY├êT/├PΦ4▀X<t< r■à≈èd/Çⁿ t:Ñ≈wΦï√╞à≈├èÑ≈├èd/├Φ═÷├â√w █tK╤πèƒ╖Ç> tC╦Θ╫ê7ê╦3└úú╟╟ü├XXXP/δ.X█.XX≤.H/K/XXXP/XXú.╥.╝.XXX├Θ╡╓QRS3╔ê¥3╥┤Φσ≤á£ê[ZY├Ç>¥t
  53. ╞¥á£°├Φj▌°├╞¥ó£├Φ¡≤QRS3╔è°┤δ┼ç╙Φ∙πç╙├2Σ<tI<uΦ┼█
  54. Σt■╠Φ┬█δ:<    u░ Φδ±Φ«█Çⁿ tÇΣuε░    ├< rΦÜ█Ç>° t    :&°uΦp·Çⁿ t■─Φå█Θ\▌Θz█è&°├Φ¼⌡├ΦÆπ╦PΦi█è▄2 Ç> tCX╦3└.ëàT├Θ:╓3└.ëàT├Θ/╓╜/φ/·/ÿ/0└1└0_0Æ00#0Ç<u░Φ≡Ç|)tΦ/QRìTΦU┤═!ΦE⌡ZY├Ç<t(Ç|)t█Ç<t8\*uΦ┘δΘ╗Ç*\*Çx3╗uK├Θ¢╒Ç<ï\'uï£╖├QRSïTïL3█3 ╕└Φ[ZY├3█è\2├êT/├■D*├èd2├èd/├SΦHèÇ╗°[├Ç<t≡Ç|*tS3█è\)*\*■L*è@3[
  55. └├Ç|)tΦWu∙░├Φ╨ r·<°u⌡╞D)╞D*∙├ï£║;£│tCë£║├Θ÷╘SΦΘ êÇ╗[δÉÇ<t∩Ç|)ÇuPΦ9XS3█è\)ê@3[■D)<u╞D2├< ⌡ÇT2├RQÇ>£u ╔u╣ÇQü┴ë║ ┤ Φ╗±Yëî│Vì|╛P╣ ≤ñ^ΦÇ>£uΦ`ìTÇ>£uΦS┤═!┤═!■└u#ΘΩ┤═!■└uÇ>£u╞£δ▀Ç>£t╪Θφá£ê╟DÇÇ<tÇ<t Ç<uΦ\YZ├â|u â|u╞δ∞ì|"Vâ╞÷£¼└¡└½¼┤└½¥^uΦ)Φ&Φ#3╥Φá■r<tBδ⌠3╥Φ╞ì|'3└½êêD2δñâl"s L$├Θ¢╙Θ┌╙QRS¿uïö╖Bδ ╥tδ|µëö╖J╟ä║ï£│Sü√Çtô≈Γô█╥
  56. ÷u─è≥è╫╨δ2 δ3█ëìî╝ëZìL3╦ë╣Ç+╦;╩rï╩¿t3ü∙ÇsΦFVQï6ï>╤Θ≤ÑsñY^Φ, +╤3█ ╥u╣[ZY├ΦVQï6ï>╤Θ≤ÑsñY^δ╘ δ$√PQRSïC;£╡u¿t Kë\'╞D)Ç╞D*Çë\"╟D$¿tΦ4δΦ[ZYX├ D'QW╣@3└ì|3≤½_YΦD┤!ΦK
  57. └░u░ÇêD)êD*
  58. └├╞D)Φ'┤"Φ.< t■╚t■╚u êìT┤═!Θû╥ D'├Θ¢╥Θå╥QRìT3┤═!ZY├QRìT═! D"u D$Çⁿ"u
  59. └t<t╥<░t
  60. ■└δ<u2└ZY├PQVïïwΦDε¿ÇxΦ∞Ω^YX├ΘA╥WÇ|u    ┤═!■└êD┐║ï}■  t;≈t⌡VWFG╣ ≤ª_^uΦΘ╥_├Φ-Γ╛₧δ Φ%ΓΦ8δïwΦíΩ┐P░┤)═!║v┤═!║P┤═!< tj╛w╣ ¼ΦA÷â∙u è< t░.Φ1÷ΓΩΦn√å─Φj√:─s░ Φ÷δΦ÷║P┤═!< u┴ΦK√
  61. ΣtΦε⌡├Φ┤ßΦ8 ║P┤═!■└t┤═!╛OΦ< ┤═!├Θ]╤ΦæßRΦ ║P┤═!■└tδï≥┐v╣ ≤ñ[Φ√■┤═!■└uï≥F┐ç╣ ≤ñ║v┤═!├Θ+╤ΦSßΦφ┤═!P┤═!Xè╨┤═!├_&èGîë> óë&ë&ó╛&èG╗₧╫ÿPó╪Wë&╝U║ ,<uè╓ 
  62. Φh]_Ç>╪╗r w 7v w■ wⁿü>║%t6Φ(■t8<,t½ï&ΦE⌡?Redo from star⌠Φτ⌠Üa:<á─> Θ| ■tΘy 2└
  63. └u╚╟║%W╦Φ⌡Overflo≈Φ░⌠δ¡VWQï6NNï ï∙üτ■ +≈&ë6Ç∙t ï√╤Θ≤ÑY_^■u┐Å Åï& . ï4ç≥ç╙Üú<ï┌ï╓δ╒ï╦ë≡ë≥3└úúΘê≡ï┴+⌠s≈╪├ï┬+÷s≈╪├â∙ u╣å┴ΦH≡rSRï≡ï≥ΦV≡ë⌠ë÷Z[δÑΘd╧╛δΦá▀┐Φ║▀ïMDZÇδæï≈┐ÑÑѽ├╛δΦ▀┐ΦÖ▀ïMïD
  64. Σt▌:∞wç≈æ
  65. Σt╥*σ÷▄Çⁿ8w╔╨α╨┘æè═╡PWï∙¼èα2└Æ¡æ¡ô¡Ç╠Ç  tcâ | ╥tÇ╔ï╤ï╦ï╪3└â∩wτtHr#â |+
  66. ╥tÇ╬è╓è±è═èδè▀è°è─2Σâ∩wt#╤Γ╤╤╤╙╤╨Gu⌡δç╧÷┬?tÇ╩ ╤Φ╤█╤▀╤┌Γ÷ç╧^ù÷┬?tÇ╩ X╨αp$4L\£ïtü╬Ç¥■s
  67. ╤▀╤█╤┘╤┌■─uuΘe╬÷╨*4L\£ïtü╬Ç¥■s3÷÷╨≈╫≈╙≈╤≈┌⌡╬▐■╛  uÇ∞v|Ntyï√ï┘ï╩3╥δΩ≈╟ uÇ∞vdùèαè╟è√è▌èΘè╬è≥▓
  68. Σùx■╠tJ╤Γ╤╤╤╙╤╫q≥Ç·Çwr÷╞tÇ╞â╤â╙â╫s■─t$Çç▀Çτ
  69. ╟úêï▀┐è╞¬æ½ô½├yΘ│═╞├╛δΦµ▌┐Φ▐ïD
  70. ΣtσïM
  71. φt▐2┴Ç∞üÇφÇσp═Ç─ÇPΦ"tÇ╩X  x╤Γ╤╤╤╙╤╫
  72. Σuδ│■─t¼Θl ╛δΦÿ▌┐Φ▓▌ïDïM2┴
  73. φtb
  74. ΣtÄÇ∞ÇÇφÇ*σp░Ç─ÇP¼èΦ2╔¡ô¡Æ¡Ç╠ÇÆï≈â╞┐²ÑÑÑFGñⁿ╞ÇÇ╤Ω╤╪╤█╤┘Φ"WΦWΦWΦ ├ ┴ ┬ï╫tÇ╩Y[_Θj ΘΘ╠ï63 ;╓s\ ╥u;≡w;≈÷Rù3φï⌡í └t≈τï≥Pí └t≈τ≡Ωí └t≈τΦâ╥ÆZ≈┌╬▌]ΦòÆæôsOsφ├O+┬ï⌡δ╔èD┤ ÇúèE┤ Çú 3█ïδï πæïπ≈ßïΦï╩ïïU ╥t≈Γ╚┌U3φïD └tï ╥t≈Γ╚┌╤╒X ┴PïD └tïU ╥t≈Γ╪Ω3╔ï └tïU ╥t≈Γ╪Ω╤╤ïD └tï ╥t    ≈Γ╪Ωâ╤X ├Pï └t≈& Φ╩ï └t≈&Φ╩3█ïD └tïU ╥t≈ΓΦ╩╤╙ïD └tïU ╥t    ≈ΓΦ╩â╙U3φïE └t≈&╚┌ïD └t≈& ╚┌ïD └tïU ╥t ≈Γ╚┌╤╒ïD≈& ╪ΩïE └t≈&╪Ωá÷& ┼ùZ^ ÷â╝VΦT
  75. t Ç<t    ë6╬^├Θ(δΘ+δ9-ao╦    ziiii i i
  76. iäKM
  77. tsvRSOuG w HPíuú╞ íú╗ê╕╞Pë&
  78. Φ├≡Φù≡Φc±Φû≡Φ╖≡
  79. └uΦ¢uΘÇ╛]╣.:tâ╞Γ÷NÇ∙
  80. vê.└. d:r δQ
  81. █tM░ΦIS 6uè*╦╡ItèçêçΦq±CΓ≥░ Φi±ZΦû∩[■ïÇ■wÇ·t■╩è6°■╞■╬ë├
  82. █t√KΘ;±SR╣Φ║ ΦM≥╣⌠║ ΦD≥Z[ï&
  83. ├<    u'èvÇΓ÷╥Ç┬■┬è┬┤= s╞░ RΦZ■╩u⌡├Ç>└tB:s<ü√ sºS 6uÅè╡*╦QèèºêºKΓ⌡YAPΦèçΓ≈ïΦ▀εX[êçü√ s╛CΦ₧≡:r
  84. êíuú├:r▀├ï│░ Φ"[Θî■ïΦíεè├ïuΦ íuúê├RSΦàε[Zè&*π░ SR
  85. Σt    PΦ@≡X■╠δ≤ZΦhε[├^è╞ç├÷└├QV╛Æ▒.¼:αt    F■╔u⌡2└δ.¼
  86. └^Y├PVCÇπ■╛L■u╞ ï6 3└≡¡¿t=  t5H;├r∩≤ë6 +├tHë+≤ï▐^X├ô7Füµ■ ôδ╥ΦLï6 ;v╟ΘzΦ[δ╣░åL<rσSï6¬ë6 │ ¡=  tΓ¿tÇ√ uï▐≡NδΩ≡N@G■δßô7Füµ■ δ╒PSVW╕ï6¬ï■H≡¡=  t#¿u≤½ôï;wu)@;≈t ëæ╤Θ≤Ñæδ▌$■°δ╒+≈âεrFë5ë> _^[X├ΦΦ║  during G.C«Φ` Θ>δΦZ Φó Internal Error - String Space Corrup⌠├ █t$â>t$VSΦ╦■ï6ïëÅëw■ë\ï╙ï▐^├║┬╗─├Θzτü√LsGü√⌡├QW╣  ░ï√≥«ï┴≈╨H_Y├Qï╦Vï≥Φª Wï·ï╓A╤Θ≤Ñ_^Y├S╗â tΦâ├ü√Lrε[├Φ» s·Φ]Pï├çë╟G  X├Φ╒■PRCÇπ■í ôï+╨rë┌C╟  Cë¼CZX├Θ▌µPQRVWQSï╩ï┌Φ2 ï·ô[^wΦº ôA╤Θ≤Ñ_^ZYX├PSïï_;¬r;¼w@ çG■[;├uX├[X├Φ╔■Φ# ΘΩRïQ3╔BΦÑ JYSï_┌╞[Z├ï>¬ë> í¼@$■+╟-½°╟E   ╣┐ë>╗  ╕½ô½ôΓ≈╟Eⁿ╞L├KYBD SCRN■CAS1²COM1ⁿCOM2√LPT1·LPT2∙LPT3°ÉÇ/ç.o.u/j/j/ì-ì-ì-ƒ.ƒ.u/j/j/Ñ-┤-┤-ƒ.ƒ.|/q/q/┘-┘-┘-á.δ.}/r/r/┌-▐-▐-Φ#÷ïïwΦt
  87. └uΘ⌡σΦû■÷╪ÿ╤αù.â╜Tt. ÑäΘεσë&╝VΦ╒uΘ≥ï▐^╦P┤ë&╝â╝ΦQX╦P┤δφP┤δΦë&╝VΦ⌐^t P┤δßë&╝Φu╦P┤δ╦P░┤
  88. ë&╝â╝VΦétRÇ<uMΦ^X╦P░δ▀P░δ┌P░δ╒ë&╝PSâ?t-ï_èÇπ▀░Ç√It░Ç√Ot░Ç√Rt░Ç√Au    ó£[Φ╙²X╦ΘσQSè╦│╥πê£[Y╦ë&╝PVΦδPVΦ u)┤ Φñ^X╦QRSï┌ïïwΦφΦò²[ZYCt
  89. K █t    â√w├Θ╦ΣΘ┐Σ╗d┐SW. _[OOu⌡├╗tδ∞Vï6╬ ÷u^Θδ┤ΦV^├Vï6╬ ÷u^Θ┴┤δΩVï6╬ ÷u^Θτ┤δ┘Vï6╬ ÷u^Θ+┤δ╚Vï6╬ ÷u^Θ┤δ╖VΦhtêΦ^├WSPδWSPèD.
  90. └x2└δ÷╪ÿ╤αï°.ï¥T █tXPåαÿ╪.ïëNX[ N_├Θ6ΣSVï6╕ ÷t è\√2 Ü±<δ∞^[├░δ╞¥░ó₧ΦróP
  91. └x2└PRW┐Q║ <ⁿt<√uQπâ∙As$ⁿ≤ñêZ▒@+╩t#è┼≤¬δπ4I¼< sÇ>₧uΘÖπΘ▒π<.t¬Juπ_ZX├ó¥â· t▀â·r┌t╨░ ¬Jδε░ ¬Ju·δ▀RWVï╤π¼<:t
  92. Γ∙ï╩^_Z2└├_ç≈W+╤t¼Iâ·t9┐)VRG¼Φ=.÷Çu.8uJuφG.è
  93. └y^^^_Z├G.÷Çt∙Z^.Ç}u═Θm ¼Φ
  94. ,@r⌡<s±δ█<ar<zw$▀├Ç>£u╞£├ä&£tç┘â├3Φç┘ï>╕ë|■ë6╕ê\√êD.ëT/├Θ╚Γ┐─í▓  └ty≈╪▓-êáΦJ▓Θ╣╞á ╣▓╛─╞0├Ç>╪r╩╗Ötâ├ è
  95. ╥t╪╢+┌░ ÷Çt░-óáèçåÿï≡╤µ╤µ╤µü╞0èdΓ÷╪PÇ>╪uoï>èè\èDÇ╔Ç÷ßïtPΦáZ▐Ç╫╢è╘èαè╟YQå═üßt╨π╤╨╤╥Γ°┐─Ç√Çwr
  96. ¿tâ╥╗'≈≤RΦæZΦ¥Zï╧┐─+╧░0≤«AOï≈├┐ΦRè┼èπùè▄èαè╟ò╖è╞èßYQå═üßt ╨Γ╤╨╤╫╤╒╤╙Γ⌠Ç·Çwr¿t â╫â╒â╙ï╫┐─╣ ╛╚+Tl\■┼s±Tl\■═â╞Ç═0ê-G╡Γ╫Θf 3╥Æ╗';╙rÆ≈≤0¬3└╗d
  97. â·drÆ÷≤åΓ÷≈00½Æ÷≈00½├┐─Φ═ Φ> ¼Φ⌐Γ·├ï■ÿ∙;┴s"æ+┴╨+°░0å<5rπOè■└<:r■┬Γ≤A░1¬Oèß░0²≤«ⁿA*ß╘┐í├
  98.  u╛║ït■ ÷t8\√u⌠Ç<uΦF3÷├PQRWS╛╕ï■ït■ ÷t9\ⁿr≥ïD■ëE■ïLⁿδï╦â├Φt∙ìwëLⁿï■3└╤Θ≤½s¬[_ZYX├WδWS┐║ï▀ï}■  t;■u≤ï|■ë■[ï>╢ë6╢ë|■_├Θfαíτ=Ps∙δíτÇⁿ rÇ∞ úτ├░úτ├íτ=≡>r∙δíτÇⁿ r-░úτ├Ç─ úτ├è┴è⌐╥σè╚r├ τ├è┴è⌐╥σè╚r├ τ├î╞╕╕Ä└ïτ&èèσ"┬è⌐╥Ωr╥Φδ°Ä╞├î╞╕╕Ä└ïτ&è2┌"σ&0Ä╞├Q╤Ωƒï┌▒╙Γ╙▒╙Γ₧sü┬ ëτZè╩÷⌐tÇß░Ç╥Φóσ▒╙Ωτ├Çß╔░└╥Φóσ▒╙Ωτ├<s÷⌐t    $÷╪ó┌°├▒U÷ßó┌°├á⌐